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Abstract: Element subdivision is the most widely used method for the numerical evaluation of 

weakly singular integrals in three-dimensional boundary element analyses. In the traditional 

subdivision method, the sub-elements, which are called patches in this paper, are obtained by 

simply connecting the singular point with each vertex of the element. Patches with large angles at 

the source point may be produced and thus, a large number of Gaussian quadrature points are 

needed to achieve acceptable accuracy. In this paper, a serendipity triangular patch with four-node 

is presented to solve the problem. Case studies have been made to investigate the effect of the 

location of the middle node of the serendipity patch on accuracy, and an optimal location is 

determined. Moreover, theoretical analysis validating the optimal location is also given with a new 

form of polar coordinate transformation. Numerical examples are presented to compare the new 

patch with the conventional linear patch with respect to both accuracy and efficiency. In all cases, 

the results are encouraging. 

Keywords: Boundary element, weakly singular integral, serendipity triangular patch, Gaussian 

quadrature, element subdivision method. 

1. Introduction 

Accurate and efficient evaluation of weakly singular integrals arising in the boundary integral 

equations (BIEs) is of crucial importance for successful implementation of the boundary element 

method (BEM) [1-6]. Much effort has been made to remove the weakly singular integrals 
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appearing in BIEs. And there are many ways of evaluating singular integrals mentioned in the 

boundary element literature. These approaches include integral simplification [7], element 

subdivision [8] and coordinate transformation [9], with each method having its advantages and 

disadvantages. Element subdivision is one of the most widely used methods for the numerical 

evaluation of weakly singular integrals. Many different element subdivision methods have been 

proposed. Klees has proposed a subdivision method and the sub-elements which are also called 

patches are obtained by simply connecting the singular point with each vertex of the element [8]. 

Zhang el al have used the subdivision method coupled with a new coordinate transformation 

which is denoted as (α-β) transformation to remove singularities [10] and further developed an 

adaptive element subdivision method named Quad-tree subdivision [11]. Obviously, all the above 

element subdivision methods may produce patches in “bad” shapes. Moreover, polar coordinate 

transformation is a powerful and useful tool to evaluate weakly singular integral in boundary 

element. It converses the surface integral into a double integral in radial and angular directions. 

Many works have been done on dealing with the singularity in the radial direction; however, 

numerical integration on the angular direction still deserves more attention. In fact, after 

singularity cancelation or subtraction, although the integrand may behave very well in the radial 

direction, its behavior in the angular direction would be much worst, so too many quadrature 

points are needed. Especially when the source point lies close to the boundary of the element, one 

can clearly observe near singularity of the integrand in the angular direction. Similar problems 

have been considered in work about the nearly singular BEM integrals. Effective methods along 

this line are the subdivision method [12], the Hayami transformation [13], the sigmoidal 

transformation [14], the conformal transformation [15], the variable transformation [16], etc. 

In this paper, Sphere subdivision method proposed by Zhang is used [17], and based on this 

method; first a serendipity triangular patch which is obtained by the element subdivision is 

introduced to overcome the problem of the integral in the angular direction. One edge of the patch 

is replaced by quadratic curve, the distance between the middle node of the quadratic curve and 

the source point is equal to the length of radius of the sphere which is centered at the source point. 

Then the polar coordinate system with new form is used in this patch. This system is very similar 

to the conventional polar system, but its implementation is simpler than the conventional polar 

system and also performs efficiently. Using the coordinate transformation, the integrals with 
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weakly singularities can be accurately calculated. Furthermore, in order to investigate the effect of 

the location of the middle node on the computational accuracy, its location is changed along the 

direction of the source point to the middle node step by step. Through theoretical analysis and 

numerical experiment, the location with the highest accuracy has been found in this paper. With 

our method, the weakly singular boundary integrals in the regular or irregular elements can be 

accurately and effectively calculated. And our method can be also applied to the patch with large 

angles at the source point. Numerical examples are presented to validate the proposed method. 

Results demonstrate the accuracy and efficiency of our method. 

This paper is organized as follows. Detailed description of the serendipity triangular patch 

and the coordinate system with new form are described in Section 2. In Section 3, the effect of the 

middle node’s location in the serendipity triangular patch is introduced. Numerical examples are 

given in Section 4. The paper ends with conclusions in Section 5. 

2. Four-nodes serendipity triangular patch 

To achieve the best balance between accuracy and efficiency, it is desirable that subdivided 

patches closer to the source point have relatively smaller sizes. To guarantee this, we use a 

sequence of spheres centered at the source point with decreasing radius to cut the element, 

recursively. And a serendipity triangular patch with four-nodes is obtained through the element 

subdivision. 
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Figure 1. Four-nodes serendipity triangular patch. 

The serendipity triangular patch is as shown in Fig. 1, the following symbols are defined: 

0——the source point; 

3——the middle node; 

0, 1, 2, 3——serendipity patch node; 

In the serendipity patch, the distance between point 0 and point 3 is equal to the length of 

radius of the sphere which is centered at the source point. And the length of radius we can 
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obtain in [17]. For the patches containing source point, the coordinate transformation is used to 

eliminate the singularities. 
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Figure 2. The coordinate transformation of serendipity triangular patch. 

Considering the weakly singular integral over a patch as shown in Fig. 2, the following 

boundary integral can be represented as  

( , )
( ) ( )

s

f y r
I y

r
  x dS            (1)

 

where y and x are referred to as the source point and the field point, respectively, r is the distance 

between y and x, f is a well-behaved function, andφ(x) is a shape function. 

For this patch, to construct the local (ρ, θ) system, the following mapping is used: 
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In the Eq. (2a), N0, N1 and N2 are the shape functions of the quadratic curve. 
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Combining Eq. (2a), 2(b) and (2c), the coordinate transformation can be written as: 

 


0 0 1 2 3 1 2 0

0 0 1 2 3 1 2 0

[ ]

[

x x N x N x N x x

y y N y N y N y y ]





    


    
                    (3) 

Then the integral I can be written as 

1 1

1 0

( , )
( , )

f y r
I Jb d d

r
    


          (4) 

Where Jb(ρ,θ) is the Jacobian of the transformation from the x-y system to the ρ-θ system, 

0 0( , ) ( ) ( )a
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ay x
Jb x x y y  

 
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     (5) 
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From Eq. (2) to Eq. (5), it can be noted that the new coordinate system is much simpler to 

implement than the conventional polar coordinate system [9]. This is due to the fact that ρ and θ 

are constrained to the interval [0, 1] and [-1, 1] in this triangle, thus there is no need to calculate 

their spans. So our method may be computationally more efficient. 

3. The effect of the middle node’s location 

3.1 Changing the middle node’s location 

In this section, we will investigate the effect of the middle node’s location on the 

computational accuracy. As shown in Fig. 3, its location is changed along the direction of the 

source point to the middle node by using the Eq. (6). 

3
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1 2 1 2

( )

( )

2 2

q p q

q p q

q q

x x x x t

y y y y t

x x y
x y

  

  

 
 

y

Figure 4. Conventional linear triangle patch. 

As both Jb and r have ρ so we can turn it off. The plot of the function f(θ)=Jb/r on the 

conv  th

       (6) 
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Figure 3. The location of the middle node in the serendipity triangular patch. 
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entional triangle patch and e serendipity triangle patch is made by MATLAB. As shown in 

Fig. 5, the plots of f(θ) have expressed when t takes different values, respectively. As we can see 

when t move close to 0.5, the plots of the function become gentler and gentler. And when t is equal 

to 0.5, the plot becomes a horizontal line. So when t changes from 0.1 to 1.0, the plots of the 

function on the serendipity triangular patch is gentler than that on the conventional linear triangle 

patch (t=0). Thus compared with conventional triangle patch, high accuracy results can be 
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obtained with less Gaussian quadrature points by using the proposed serendipity triangular patch. 

 

Figure 5. The plots of function Jb/r. 

3.2 The triangle patch with larg

is paper is called sphere subdivision method [17]. An 

elem

Eq. (7) can be obtained [18]. And using Eq. (7b), we can obtain 

the d

e angles 

The element subdivision used in th

ent is subdivided into a number of patches through a sequence of spheres with decreasing 

radius, the obtained patches are automatically refined as they approaching the source point and the 

patches also have the same aspect ratio. The patches with large angles at the source point may be 

produced through the element subdivision. And there are some difficulties on the integrals of the 

angular direction in these patches. 

Using Eq. (3) and Eq. (5), the 

erivative of g() as shown in Eq. (7c). 
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Figure 6. (a) Conventional linear triangle patch; (b) serendipity triangular patch. 
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Figure 7. The plots of function Jb/r. 

The conventional linear t  when the angle ∠102 takes 

diffe

riangle patch as shown in Fig. 6(a),

rent values, the plots of the Eq. (7a) have been made by MATLAB. And 1r  is the distance 

between the source point to the point of the edge 12. As shown in Fig. 7, when t  angle increase 

gradually, the plots of function f(θ)=Jb(ρ,θ)/r are becoming steeper and steeper. The reason is as 

follows: the point 3 is the midpoint of the point 1 and 2, from Eq. (7b) to Eq. (7c) it can be noted 

that g(θ) is a constant. Therefore, when the angle ∠102 is gradually increase, the change of

he

 1r  

will become more and more acutely. When 1r  is close to zero, the near singularity in f(θ) can be 

clearly seen from Fig. (7).  

 

Figure 8. The plots of function Jb/r. 

If the serendipity triangul  to substitute the conventional 

linea

ua

ar patch as shown in Fig. 6(b) is used

r triangular patch, the variety of 1r  becomes less evident and the function of g(θ) isn’t a 

constant. When the angle ∠102 is eq l to 0.84π, the plots of the function f(θ)=Jb(ρ, θ)/r are 
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shown in Fig. 8. It can be clearly seen that the curve in the plot become gentler and gentler when t 

is changed close to 0.5. So when evaluating the function f(θ), more accurate results can be 

obtained by using the serendipity triangular patch. 

3.3 The best location of the middle node 

In this section, the best location of the middle node is found when t is equal to 0.5. The 

theo

q. (3) can be written as the form of the Eq. (8). 

Figure 9. The location of t  triangular patch. 

retical analysis is given to verify that. And more details of the theoretical analysis are as 

follows.  
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From the element subdivision, we can obtain that the line segment 03 is perpendicular to line 

segm

2

   
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ent 12, and the edges 02, 01, and 0p have the same length R obtained by element subdivision 

[17]. In order to conveniently calculate the coordinate of the point p, the source point is placed in 

(0, 0). The coordinate of the point p and the point 3 can be obtained by Eq. (9) and as shown in Eq. 

(10).  
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Using Eq. (8a) and Eq. (8b), the Eq. (11) can be obtained. As the line segment 12 is 

perpendicular to the line segment 0p and the slope of the line pq is equal to that of the line 03. The 

Eq. (12) can be obtained.  
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Using Eq. (12), Eq. (11) can be written as: 

2 2 4 2
2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

2 2 2 4 2 2 2 2 2 2
1 2 1 1 2 2 1 2 1 2

[( ) +2( )( ) +( ) ]

[( ) (2 2 ) ]

Jb a b a b a b a b c b c b c b c b

r a a a c a c b b c c

2 2  

 

    

        
 

And Eq. (11) can be further written as [18]: 
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2 2 2 2 2 2
1 2 1 2 1 1 2 2 1 24( )( ) (2 2 )M c c a a a c a c b b            (14) 

2 2 2
1 1 2x y xR    yR         (15) 

Substitute the parameter a1, a2, b1, b2, c1, c2 and Eq. (15) into Eq. (14) and Eq. (16), 

respectively. Calculate it in MAPLE 15 when t is equal to 0.5, M=0 and N=0 can be easily 

obtained. So t=0.5 is a common root of the equation M(t)=0 and N(t)=0. 

9 



2 2 2 2
1 2 2 1 1 2 1 1 2 2 1 2 2 1 1 22( )( ) (2 2 )( )N c b c b a a a c a c b b a b a b            (16) 

That is to say, when t is equal to 0.5, the Eq. (17) is workable and the ratio of Jb(ρ,θ)/r has 

nothing to do with ρ and θ. And the ratio A can be expressed as follows in Eq. (18). 

2 2
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
)
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         (18) 

With the detailed description above, it can be clearly seen that our method has obvious 

advantages over conventional method. Firstly, the plots of the integrand of the angular direction 

become quite gentle. Secondly, as the patches obtained are automatically refined as they 

approaching the source point, Gaussian sample points are set denser around the source point to get 

an accurate enough result. Away from the source point, Gaussian sample points are sparsely 

distributed, much fewer but enough to guarantee an accurate result, so a large number of 

unnecessary Gaussian sample points are avoided. In a word, with the serendipity triangular patch 

coupled with the coordinate transformation, the weakly singular integrals can be solved with 

higher accuracy and less computational cost.  

4. Numerical examples 

To evaluate the effectiveness and accuracy of our method, in this section, several 

comparisons are made between our method and the conventional method for planar element and 

curved surface element. For the purpose of error estimation, relative error is defined as follows: 

Relative Error= n e

e

I I

I


                           (19) 

Where In is the numerical solution, and Ie is the exact solution of the integral. 

We consider the numerical evaluation of the integral 

1
I d

r



          (20)

 

In Eq. (20), where Г is an arbitrary boundary element and ϕ is a shape function of the element. 

And in all the numerical examples, the above coordinate transformation is used to remove 

singularities in the patches which contain the source point, while the remaining regular 

quadrilateral and triangular patches are respectively evaluated by the standard Gaussian 

quadrature. The number of the Gaussian points m is determined by [19-21]. 
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4
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23 5 3
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m p
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                        (21) 
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Where p represents the order of the singularity (p=1,2,3). e denotes the error tolerance. L is the 

length of patch in integral direction. And R is the minimum distance from the source point to the 

boundary element. 

4.1 Examples of serendipity triangle patch 

In this example, we study the influence of the middle node’s location on the computational 

accuracy in our method when the source point is fixed. As shown in Fig.11, three vertexes of the 

patch located at (0, 1, 0), (-2, 0, 0) and (2, 0, 0), respectively. In each case, the source point is 

fixed at (0, 1, 0), and the middle node 3 is determined by an offset parameter t, 0 , using the 

following equation : 
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Figure 10. The location of the middle point of the serendipity triangular patch. 

Table 1: Gaussian points number used by linear and serendipity patch in case of equivalent 
accuracy. 

Gaussian points number  

 (angular 

direction)

(radius 

direction)
total 

Relative Error 

Conventional method (t=0.0) 14 5 70 7.14e-007 

Our method (t=0.3) 10 5 50 2.34e-007 

Our method (t=0.5) 2 5 10 3.33e-016 

Our method (t=0.7) 7 5 35 2.86e-008 

Our method (t=1.0) 7 5 35 9.97e-007 

The accuracy obtained by both our method and the conventional method and the number of 

the Gaussian sample points used are listed in Table 1 and Table 2. It is seen that to obtain the same 
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level of accuracy, our method needs much fewer sample points, and thus, considerably increases 

the computational efficiency. And as illustrated in Table 1 and Table 2, from the numerical 

solutions obtained we can find that when t = 0.5, we can obtain the highest accuracy with the 

fewest Gaussian sample points. 

Table 2: accuracy obtained by linear and serendipity patch in case of equivalent Gaussian sample 
points. 

Gaussian points number   

(angular 

direction)

(radius 

direction)
total 

Relative Error 

Conventional method (t=0.0) 7 5 35 8.43e-004 

Our method (t=0.3) 7 5 35 2.31e-005 

Our method (t=0.5) 7 5 35 3.33e-016 

Our method (t=0.7) 7 5 35 2.86e-008 

Our method (t=1.0) 7 5 35 9.97e-007 

4.2 Examples of triangle element with large-angle 

0

1 2






4

3 5

 

Figure 11. Subdivisions of planar triangular element with our method. 

In this part, we study the numerical evaluation of the triangle element in our method when t 

= 0.5. Three vertexes of the element are located at (0, 1, 0), (-4, 0, 0) and (4, 0, 0), respectively. 

And the source point is fixed at (0, 1, 0). Through adaptive element subdivision [17], the element 

is subdivided two patches as shown in Fig. 11. And the angle at the source point is approximate 

equal to 0.84π. The coordinate of point 3, 4 and 5 can be calculated by using Eq. (10b). 

Table 3: Numerical evaluation for planar triangular element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional 

method 
55 1.68e-003 130 9.05e-007 

Our method  

(t=0.5) 
54 8.11e-006 87 5.60e-007 

The accuracy obtained by both our method and the conventional method and the number of 
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the Gaussian sample points used are listed in Table 3. It can be seen that to obtain the same level 

of accuracy, our method needs much fewer sample points, and thus, considerably increases the 

computational efficiency. 

4.3 Examples of planar element 

In this example, we study the numerical evaluation of the planar quadrilateral element and 

slender quadrilateral element in our method when t = 0.5. The vertexes of the planar element are 

located at (1, 1, 0), (-1, 1, 0), (-1, -1, 0), (1, -1, 0) and that of the slender element are (5, 1, 0), (-5, 

1, 0), (-5, -1, 0), (5, -1, 0), respectively. And the source point is fixed at (0, -0.9, 0). As shown in 

Fig. 12 and Fig. 13, the source points are very close to the edge. Through adaptive element 

subdivision [17], the element is subdivided into a few patches as shown in Fig. 12(b) and Fig. 

13(b). 

        

(a) the conventional method                (b) Our method 

Figure 12. Subdivisions of planar quadrilateral element with our method. 

Table 4: Numerical evaluation for planar quadrilateral element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional 

method 
672 3.01e-004 1664 7.79e-007 

Our method  

(t=0.5) 
652 3.95e-006 872 4.81-007 

 

(a) the conventional method 

 

(b) Our method 

Figure 13. Subdivisions of slender quadrilateral element with our method. 
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Table 5: Numerical evaluation for slender quadrilateral element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional 

method 
1600 9.30e-004 9600 9.41e-007 

Our method  

(t=0.5) 
1592 1.40e-005 3408 4.81-007 

The accuracy obtained by both our method and the conventional method and the number of 

the Gaussian sample points used are listed in Table 4 and Table 5. It is seen that when the number 

of Gaussian sample points used is the same, the accuracy obtained by our method is higher than 

that by the conventional method. And to obtain the same level of accuracy, our method needs 

much fewer sample points. The effectiveness and accuracy of our method are demonstrated again. 

4.4 Examples of curved surface element 

In this part, we study the numerical evaluation of the curved quadrilateral element in our 

method when t = 0.5. The vertexes of the element are located at (1, 1, 1), (-1, 1, 0), (-1, -1, 1), (1, 

-1, 0) and the mid-nodes are located at (0, 1, 0.7), (-1, 0, 0.6), (0, -1, 0.5) and (1, 0, 0.7). And the 

source point is fixed at (0, -0.9, 0.538). And the mapped element as shown in Fig. 14, the source 

points are very close to the edge. As element subdivision technique we used is subdivided at the 

local coordinate system, so through adaptive element subdivision [17], the element is subdivided 

into a few patches as shown in Fig. 14(b). 

        

(a) the conventional method                (b) Our method 

Figure 14. Subdivisions of curved quadrilateral element with our method. 

Table 6: Numerical evaluation for curved quadrilateral element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional 

method 
640 2.53e-004 2208 2.22e-007 

Our method  

(t=0.5) 
612 1.12e-005 916 3.03-007 
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The accuracy obtained by both our method and the conventional method and the number of 

the Gaussian sample points used are listed in Table 6. It is seen that when the number of Gaussian 

sample points used is the same, the accuracy obtained by our method is higher than that by the 

conventional method. And to obtain the same level of accuracy, our method needs much fewer 

sample points. The effectiveness and accuracy of our method are demonstrated again. 

5. Conclusions 

In this paper, a serendipity triangle patch with four-node is introduced for calculating the 

singular integrals in the BIE. By theoretical analysis and numerical experiment, the optimal 

location of the middle node of the serendipity patch has been found for the highest accuracy and 

efficiency. From the numerical examples, it has been demonstrated that our method can achieve 

much better accuracy than the conventional method with equivalent number of Gaussian sample 

points. On the other hand, to obtain the same level of accuracy, our method requires much fewer 

sample points, and thus, considerably increases the computational efficiency. Extending our 

method to compute curved surface element and 3D nearly singular integral is straightforward and 

ongoing. 
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